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Extended Abstract
Already, radar detection traces path-finding via an excitable boundary system. How to translate biological boundaries into next-
generation physical computing an excitable registration? In a direct biological interface wearability records in real-time behavioral
process  under  the  skin  excitable  membranes  (boundary  systems).  A technology  with direct  biological  interface is  overdue  to
counteract observations of sensorimotor behaviors in a black-box. Accuracy in movement recordings will index preconditions or
prerequisite premotor cortical potentials (Dirnberger et al.,1998). This behavioral research attempts to authenticate the translation
of motor circuits' neuroplasticity within a multiscale computational infrastructure to minimize biological uncertainty and maximize
behavioral assessments. A clinical breast exam serves as a robust testbed to reconcile multiscale computation according to: (1)
granular indexing of behavioral resolution in posture shifts; (2) motor circuits (inhibitory, excitatory); and, (3) expert exercise of
anatomical  knowledge.  Background.  This  case  study  compares  three  capture  strategies:  (1)  Pugh's  sensor  training  system
(Kotranza et al.2009); (2) multi-tool radiological practice (Kolb  et al.,  2002); and, (3) proprioception model (Khoshhal  et al.,
2010). The diagnostic screening by medical students’ haptic abilities transfers biological criteria across movement analysis. The
clinician's movement and knowledge replaces spatial locomotion with three motion indicators.  Assessment-Problem: exploratory
sensorimotor behavior  and anatomical  knowledge in a  clinical  exam. Search-Problem:  differential  screening,  each breast  with
varying density and lesions. Classifier-Problem: assessing each medical student’s haptic ability using anatomical knowledge with a
personalized signature (temporal and sensorimotor). At the crossroad of big-simulations: (1) large scale  cortical studies (in silico);
(2)  nanoscience co-cultures  (stem cell  & microfluidics)  or species  preparations (in vitro);  or,  (3) the physicality of pervasive
computing a   translational practice revisits movement as  biologically principled inputs allocated through behavioral outcomes.
Translational methodology informs interdisciplinary studies as a specialization in “what we see.” A Translationally Principled
Computational  Infrastructure. Why  build  a  motion  capture  on  existing  computational  hierarchy?  "Precise  knowledge  of
computations performed by brain circuits is not crucial for the construction of clinically relevant BMIs" (Lebedev & Nicolelis,
2006). A research agenda grounded on translational criteria (from skin to scale) builds appliances from the ground-up by positing a:
material platform, conceptual organization, and physical computing for the transformation of existing tools into a novel behavioral
computational infrastructure. Since Edward Muybridge's (1830-1904) photographic study on the question: “If all feet leave the
ground  during  a  horse's  gallop?”  motion  assessment  remains:  (1) biologically  neutral (a  spatial  measure  based  on  cinematic
recordings with frame-by-frame expressions); (2) anatomically skewed without the first-person perspective (over the shoulder) of
proprioception; and, (3)  kinematics computation without state variables of neuroplasticity Kelso's (2012) multistability. Image-
based motion capture makes no distinction between the movement of a rock and biological motion. The multiscale capture of
biologically principled inputs investigates levels of neurophysiology hidden from image-based capture.  This translational research
agenda inquires into several topics: (1) pattern for a diagnostic assessment; (2) behavioral resolution series and electrophysiological
routines in biometric sensing; and, (3) a wearable paradigm as tool-use orients to any biological movement.  From Prosthesis to
Physiome.  Posture  shifts  act  as  a  transparent  medium which  tag  in  360° from  skin  to  scale to  approximate  Arber's  (2012)
interleaving  organization  of  motor  function.  A wearable  system monitors  the transparency and self-measurement disclosed  by
a physiome (sensorimotor switching, skin innervation, and neuroplasticity). Adjustments in movement expressed as transitional
pairs  {(from-,  evacuation)|(to-,  entry)}  index  under  the  skin  state  variables  (electrophysiology,  sequential  patterns,  and
excitatory/inhibitory exchanges).  RFID sensors compute from  skin to scale according to translational observations. A wearable
appliance marks difference to capture configurations of central pattern generator activity (Marder & Calabrese, 1996) in routine
behaviors.  Since Chalfie et al. (1985) backward posture shift's wiring vary from forward movement's wiring unlike cinematic
rewind. A direct biological interface reconciles a material configuration (RFID tags) with a kinematic model (free-body-diagram):
local dynamics of a wind chime model biological movement as local interactive histories (genidentic Reichenbach  et al.,  1957)
with physical operators (insertion, superimposition, and juxtaposition) supersedes the utility of cinematic recordings.  Systematic
indexing of combinations of motor behaviors and skin innervation transforms visual  evidence. Deleuze's (1994)  intensities  of
difference   (E → e, e → ε, ε → ε') organize multi-scale indexing. Anatomical behavioral descriptions of interlimb movement
(Bobbitt, 2015) support a novel visual index: a granular drilling into posture shifts. Excitable Registration. Where does data come
from? A direct computation during posture shifts follows physical operators and posture detection rules across local neighborhoods.
A skin to scale wearable reads switching and regulation in biological movement in a translationally principled recording system.
From skin to scale extends Galvani's 1791 studies (Galvani  et al., 1953) and electrophysiology (Hodgkin & Huxley, 1952) as a
behavior circuit (Bobbitt, 2016b) transmits a musculoskeletal motion capture. A real-time processing of posture shifts warrants an
excitable interface  (behavioral  circuit):  (1)  RFID data  (posture  shifts);  (2)  simulated electrophysiological  data extracted  from
NEURON (Hines & Carnevale, 1997); and (3) mathematical expectation based upon multifunctional circuits (Briggman & Kristan,
2008). A wearable's  multiscale  computation  (Wenian  &  Engquist,  2003)  translates  tissue  engineering's  3-way  organization
(extracellular platform, cellular, and molecular processing). The body moves (fills-in) are registered/processed by a smart garment.

1A novel wearable movement recording system addresses the challenge proposed in 2009 by the Interagency Modeling and Analysis Group (NIBIB):“Models that
generate testable hypotheses regarding the biological underpinnings of behavioral and social phenomena and processes at the individual and population level.” 



Local Positioning System 
1. Local (free-body-diagram)                                             → 2. Unconventional  Geometry   →             3. Porous Solid Fractal Bio-Encoding (Back/Forward Movement)    → 4. Behavioral Circuit

HOW TO TRANSLATE PHOTOGRAPHY INTO THE FIRST PERSON PERSPECTIVE

BODY FILLS A GARMENT WHILE RECORDING POSTURE SHIFTS

Building  Behavioral Computational Infrastructure (Multiscale)



 References
Abdel-Aziz, Y.I., & Karara, H.M. (1971). Direct linear transformation from comparator coordinates into object space coordinates in 

close-range photogrammetry.Proceedings of the Symposium on Close-Range Photogrammetry (pp. 1-18). Falls Church, 
VA: American Society of Photogrammetry.

Arber, S. (2012). Motor circuits in action: specification, connectivity, and function. Neuron, 74(6), 975- 989.
Ardiel, E. L., & Rankin, C. H. (2008). Behavioral plasticity in the C. elegans mechanosensory circuit. Journal of neurogenetics, 

22(3), 239-255.
Azari, D. P., Pugh, C. M., Laufer, S., Kwan, C., Chen, C. H., Yen, T. Y., ... & Radwin, R. G. (2016). Evaluation of simulated clinical 

breast exam motion patterns using marker-less video tracking. Human factors, 58(3), 427-440.
Baer, W., & Pizzi, R. (2008). The search for biological quantum computer elements. In ICCES: International Conference on 

Computational & Experimental Engineering and Sciences (Vol. 6, No. 1, pp. 51-71).
Bobbitt, N. (2015) Recursive Behavior Recording: Complex Motor Stereotypies and Anatomical Behavior Descriptions, master’s 

thesis, University of Central Florida, Orlando, Florida.
Bobbitt, N. (2016a) A high-throughput method on marking intensities of difference: response to reviewers. Unpublished 

manuscript.
Bobbitt, N. (2016b) Work Plan: Dynamic Behavior Circuit & Motion Capture Transparency Model: SecondSkin a Wearable 

Technology & Autism Diagnosis Interface. Unpublished manuscript.
Borghese, N. A., Bianchi, L., & Lacquaniti, F. (1996). Kinematic determinants of human locomotion. The Journal of 

physiology, 494(3), 863-879.
Briggman, K. L., & Kristan Jr, W. B. (2008). Multifunctional pattern-generating circuits. Annu. Rev.Neurosci., 31, 271-294. 
Brown, A. E., & Schafer, W. R. (2013). Automated behavioural fingerprinting of C. elegans mutants. arXiv preprint 

arXiv:1301.1017.
Chronis, N., Zimmer, M., & Bargmann, C. I. (2007). Microfluidics for in vivo imaging of neuronal and behavioral activity in 

Caenorhabditis elegans, 4,9, 727–731.
Deleuze, G. (1994). Difference and repetition. Columbia University Press.
Dirnberger, G., Fickel, U., Lindinger, G., Lang, W., & Jahanshahi, M. (1998). The mode of movement selection Movement-related 

cortical potentials prior to freely selected and repetitive movements. Experimental Brain Research, 120,2, 263-272.
Feng, Z., Cronin, C. J., Wittig, J. H., Sternberg, P. W., & Schafer, W. R. (2004). An imaging system for standardized quantitative 

analysis of C. elegans behavior. BMC Bioinformatics, 5, 115.
Fromherz, P. (2006). Three Levels of Neuroelectronic Interfacing Silicon Chips with Ion Channels, Nerve Cells, and Brain Tissue. 

Annals of the New York Academy of Sciences, 1093, 1, 143-160.
Galvani, L., Aldini, G., & Green, R. M. (1953). Commentary on the Effect of Electricity on Muscular Motion.(A Translation of 

Luigi Galvani's De Viribus Electricitatis in Motu Musculari Commentarius.) By Robert Montraville Green.[Translated 
from the Edition Published in 1792 by Giovanni Aldini, Together with a Translation of Aldini's Introductory Dissertation 
and an Introduction by Giulio C. Pupilli.]. Cambridge, Mass..

Grasso, R., Bianchi, L., & Lacquaniti, F. (1998). Motor patterns for human gait: backward versus forward locomotion. Journal of 
Neurophysiology, 80(4), 1868-1885.

Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural computation, 9(6), 1179-1209.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and 

excitation in nerve. The Journal of physiology, 117(4), 500-544.
Hong, Y. J., Kim, I. J., Ahn, S. C., & Kim, H. G. (2010). Mobile health monitoring system based on activity recognition using 

accelerometer. Simulation Modelling Practice and Theory, 18(4), 446-455.
Hunter, P. J., Crampin, E. J., & Nielsen, P. M. (2008). Bioinformatics, multiscale modeling and the IUPS Physiome Project. 

Briefings in bioinformatics, 9(4), 333-343.
Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during 

human locomotion. The Journal of physiology, 556(1), 267-282.
Jakobson, R. (1978). Six Lectures on Sound and Meaning, trans. John Mepham, MIT Press.
Kaufman, C. S., Jacobson, L., Bachman, B. A., & Kaufman, L. B. (2006). Digital documentation of the physical examination: 

moving the clinical breast exam to the electronic medical record. The American journal of surgery, 192(4), 444-449.
Kawano, T., Po, M. D., Gao, S., Leung, G., Ryu, W. S., & Zhen, M. (2011). An Imbalancing Act: Gap Junctions Reduce the 

Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion. Neuron, 72(4), 572-586.
Keet, C. M. (2006). A taxonomy of types of granularity. In GrC (pp. 106-111). 
Keet, C. M. (2008). A formal theory of granularity (Doctoral dissertation, PhD Thesis, KRDB Research Centre, Faculty of 

Computer Science, Free University of Bozen-Bolzano, Italy).
Kelso, J. A. S. (2012). Multistability and metastability: understanding dynamic coordination in the brain. Philosophical 



Transactions of the Royal Society B: Biological Sciences, 367,1591, 906-918.
Khoshhal, K., Aliakbarpour, H., Quintas, J., Drews, P., & Dias, J. (2010). Probabilistic LMA-based classification of human 

behaviour understanding using power spectrum technique. In Information Fusion (FUSION), 2010 13th Conference 
on (pp. 1-7). IEEE.

Kolb, T. M., Lichy, J., & Newhouse, J. H. (2002). Comparison of the performance of screening mammography, physical 
examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient 
evaluations.Radiology, 225(1), 165-175.

Kotranza, A., Lind, D. S., Pugh, C. M., & Lok, B. (2009). Real-time in-situ visual feedback of task performance in mixed 
environments for learning joint psychomotor-cognitive tasks. In Mixed and Augmented Reality, 2009. ISMAR 2009. 8th 
IEEE International Symposium on (pp. 125-134). IEEE.

Larsch, J., Ventimiglia, D., Bargmann, C. I., & Albrecht, D. R. (2013). High-throughput imaging of neuronal activity in 
Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 110(45), E4266-E4273.

Laufer, S., Cohen, E. R., Maag, A. L. D., Kwan, C., Vanveen, B., & Pugh, C. M. (2014). Multimodality approach to classifying 
hand utilization for the clinical breast examination.Studies in health technology and informatics, 196, 238.

Law, K. E., Jenewein, C. G., Gannon, S. J., DiMarco, S. M., Maulson, L. J., Laufer, S., & Pugh, C. M. (2016). Exploring hand 
coordination as a measure of surgical skill. Journal of Surgical Research, 205(1), 192-197.

Le Clair, C.,   (2016). Vendor Landscape: ECM Providers Gobble Up Capture Technology. Forrester Research  
https://www.emc.com/collateral/forrester/res119368.pdf Retrieved July 5, 2018.

Lebedev, M. A., & Nicolelis, M. A. (2006). Brain-machine interfaces: past, present and future. Trends in Neurosciences, 29, 9, 536-
546.

Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience,7(2), 153-160.
McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton's laws?. Nature neuroscience, 4(7), 693.
Nathwani, J. N., Law, K. E., Ray, R. D., Long, B. R. C., Fiers, R. M., D'Angelo, A. L. D., ... & Pugh, C. M. (2016). Resident 

performance in complex simulated urinary catheter scenarios. Journal of Surgical Research, 205(1), 121-126.
Norman, D. A., & University of California, San Diego. (1990). Cognitive artifacts (Report, 9002; Report (University of California, 

San Diego. Department of Cognitive Science), 9002). La Jolla, Calif.: Dept. of Cognitive Science, University of 
California, Diego.

Pugh, C. (2003) Medical Examination and Learning Measurement System. U.S. Patent Application No. 10/192,756.

Reichenbach, H., Freund, J., & Reichenbach, M. (1957). Philosophie der Raum-Zeit-Lehre. The Philosophy of Space & Time... 

Translated by Maria Reichenbach and John Freund, etc. Dover Publications.

Salvador, L. C., Bartumeus, F., Levin, S. A., & Ryu, W. S. (2014). Mechanistic analysis of the search behaviour of Caenorhabditis 
elegans. Journal of The Royal Society Interface, 11(92), 20131092.

Schafer, W. R. (2011). Automated behavioural fingerprinting of C . elegans mutants Bacterial lawn Crawling on Swimming in, 1–
28.

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication.Urbana: University of Illinois Press.
Stephens, G. J., Johnson-Kerner, B., Bialek, W., & Ryu, W. S. (2008). Dimensionality and dynamics in the behavior of C. elegans. 

PLoS Computational Biology, 4(4), e1000028.
Stephens, G. J., Johnson-kerner, B., Bialek, W., & Ryu, W. S. (2009). From modes to movement in the behavior of C. elegans.
Stephens, G. J., de Mesquita, M. B., Ryu, W. S., & Bialek, W. (2011). Emergence of long timescales and stereotyped behaviors in 

Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 108,18, 7286-7289.
Weinan,E., & Engquist, B. (2003). Multiscale modeling and computation.Notices of the AMS, 50(9), 1062-1070.
Wen, Q., Po, M. D., Hulme, E., Chen, S., Liu, X., Kwok, S. W., ... & Samuel, A. D. (2012). Proprioceptive Coupling within Motor 

Neurons Drives C. elegans Forward Locomotion. Neuron, 76(4), 750-761.

https://www.emc.com/collateral/forrester/res119368.pdf

